skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Garland, Joshua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. There is increasing awareness that data science and computational thinking are critical skills for undergraduates to develop but these can be difficult to integrate into undergraduate Biology classes. In this module, we describe how we have used a system for learning the programming language R that focuses on building students? skills and confidence in data exploration, management, and visualization. This activity pairs a hands-on virtual experiment where students simulate animal movements and social interactions to provide a friendly introduction to basic data science for biologists. During the activity, students play the ?Bat Game?, an online game which students access via an internet browser. Each student controls the movement decisions of one bat within a social group. The bats must search for cows they can bite to get a meal of blood. Students take the roles of bats in a series of foraging tasks. Students must follow ?rules? and attempt to match their overall actions to those of their group members under different scenarios. The game platform collects all the locations of all bats in the game. After playing the game, students export the data they just created and analyze it to learn how to detect known patterns through basic summaries and plotting in R. All analyses and programming skills are presented in one cohesive R Markdown file, where students can read about the goals of each coding chunk, can run each chunk, and then answer questions about the biology of the social system as well as basic questions about the code used in the analyses. This approach decouples coding from statistics, assumes no prior knowledge, and uses a charismatic species to incentivize student participation. This module can be used in many courses including lab sections of large-enrollment introductory biology courses as well as smaller upper-level courses 
    more » « less
  2. Abstract Citizen-generated counter speech is a promising way to fight hate speech and promote peaceful, non-polarized discourse. However, there is a lack of large-scale longitudinal studies of its effectiveness for reducing hate speech. To this end, we perform an exploratory analysis of the effectiveness of counter speech using several different macro- and micro-level measures to analyze 180,000 political conversations that took place on German Twitter over four years. We report on the dynamic interactions of hate and counter speech over time and provide insights into whether, as in ‘classic’ bullying situations, organized efforts are more effective than independent individuals in steering online discourse. Taken together, our results build a multifaceted picture of the dynamics of hate and counter speech online. While we make no causal claims due to the complexity of discourse dynamics, our findings suggest that organized hate speech is associated with changes in public discourse and that counter speech—especially when organized—may help curb hateful rhetoric in online discourse. 
    more » « less
  3. Scaling regions—intervals on a graph where the dependent variable depends linearly on the independent variable—abound in dynamical systems, notably in calculations of invariants like the correlation dimension or a Lyapunov exponent. In these applications, scaling regions are generally selected by hand, a process that is subjective and often challenging due to noise, algorithmic effects, and confirmation bias. In this paper, we propose an automated technique for extracting and characterizing such regions. Starting with a two-dimensional plot—e.g., the values of the correlation integral, calculated using the Grassberger–Procaccia algorithm over a range of scales—we create an ensemble of intervals by considering all possible combinations of end points, generating a distribution of slopes from least squares fits weighted by the length of the fitting line and the inverse square of the fit error. The mode of this distribution gives an estimate of the slope of the scaling region (if it exists). The end points of the intervals that correspond to the mode provide an estimate for the extent of that region. When there is no scaling region, the distributions will be wide and the resulting error estimates for the slope will be large. We demonstrate this method for computations of dimension and Lyapunov exponent for several dynamical systems and show that it can be useful in selecting values for the parameters in time-delay reconstructions. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. Paleoclimate records are rich sources of information about the past history of the Earth system. Information theory provides a new means for studying these records. We demonstrate that weighted permutation entropy of water-isotope data from the West Antarctica Ice Sheet (WAIS) Divide ice core reveals meaningful climate signals in this record. We find that this measure correlates with accumulation (meters of ice equivalent per year) and may record the influence of geothermal heating effects in the deepest parts of the core. Dansgaard-Oeschger and Antarctic Isotope Maxima events, however, do not appear to leave strong signatures in the information record, suggesting that these abrupt warming events may actually be predictable features of the climate’s dynamics. While the potential power of information theory in paleoclimatology is significant, the associated methods require well-dated and high-resolution data. The WAIS Divide core is the first paleoclimate record that can support this kind of analysis. As more high-resolution records become available, information theory could become a powerful forensic tool in paleoclimate science. 
    more » « less
  7. Permutation entropy techniques can be useful for identifying anomalies in paleoclimate data records, including noise, outliers, and post-processing issues. We demonstrate this using weighted and unweighted permutation entropy with water-isotope records containing data from a deep polar ice core. In one region of these isotope records, our previous calculations (See Garland et al. 2018)revealed an abrupt change in the complexity of the traces: specifically, in the amount of new information that appeared at every time step. We conjectured that this effect was due to noise introduced by an older laboratory instrument. In this paper, we validate that conjecture by reanalyzing a section of the ice core using a more advanced version of the laboratory instrument. The anomalous noise levels are absent from the permutation entropy traces of the new data. In other sections of the core, we show that permutation entropy techniques can be used to identify anomalies in the data that are not associated with climatic or glaciological processes, but rather effects occurring during field work, laboratory analysis, or data post-processing. These examples make it clear that permutation entropy is a useful forensic tool for identifying sections of data that require targeted reanalysis—and can even be useful for guiding that analysis. 
    more » « less